Integrating biological and economic objectives in the harvest strategy evaluation of giant crab

Philippe Ziegler, Caleb Gardner, Sarah Jennings

TAFI is a joint venture between the State Government and the University of Tasmania

Fishery

- Small-scale fisheries across SE Australia (SA, Vic, Tas)
- Markets on mainland and Asia
- Initially byproduct in lobster fishery, targeted fishery since 1992/93
- Maximum Tas catch in 1994/95: 291t (over-reporting?) Catch in 2007/08: 53t

Management measures

Predominantly summer fishery
Closed seasons for M (Sep-Oct) and F (May-Oct)
No take of ovigerous females
TAC not caught in recent years due to low catch rates and seasonal market saturation

Beach price \& Revenue

Price splits: Smallest crab with highest price/kg Strong seasonal price fluctuations
Real price relatively stable over time Strong fluctuation of revenue

Fishing fleet

Often 'part-time' fishery (e.g. fishing for lobsters or scallops)

Management objectives

- Maintain fish stocks at optimum sustainable levels;
- Sustain \& optimise yield (by way of size limits; protecting under-size giant crabs)
- Mitigate competition between different fishing methods for access to shared fishing grounds;
- Provide socio-economic benefits to the community;
- Provide high quality products.

Hist orically: Stock sustainability \& maximising yield Now: Stock sustainability \& maximising profit

Can the fishery simultaneously maintain/increase egg production and increase (net) present value by adjusting TAC and size limits:

- Improve revenue by catching more small crabs (higher beach price)
- Reduce costs by lowering fishing effort

Stock assessment model

- Catch-at-length assessment model fitting to catch rates and lengthfrequency data to estimate annual recruitment
- Extension with an economic module for estimation of return, cost and profit (present value)
- Allows to project alternative harvest strategies into the future (e.g. varying TAC, size limits, closed seasons) using historical recruitment pattern
- Simplified economic assumptions: No changes in fleet dynamics in future
(in the past little changes in effort distribution between E \& W although there is no restriction on fishing location)
Constant cost
- Marginal revenue assumed to be independent of catch (seasonal changes in price not driven by giant crab catches)

Biological parameters

Grow well over 12 kg

Long-lived, increasingly slower growing
Growth = Growth Increment * Moult probability
\rightarrow 'Lethargic' population dynamics

Carapace Length mm

Revenue

Future TAC = 62t

(current catch only 53t)

Constant beach price Total revenue is catch*price per size splits

Cost

Costs as composite of:

- Fixed costs (insurances, fees \& levies, licenses, boat depreciation..)
- Variable costs (maintenance, gear, bait, fuel, labour...)
\rightarrow Economic survey of (lobster) fishers
Here: Costs per trap lift assumed constant at \$20/trap lift (proxy from lobster fishery)

$T A C=62 t$

95\% CI
 Median
 $P(80 \%)$

Testing alternative scenarios

Medians only

Status quo
No upper SL Take all F (all year) Change lower SL:
__ M140 F140
—— M130 F130
M130 F150

Impact on Revenue \& Cost

Only change of lower SL affects present value substantially
Lower catches: lower costs help balancing lower revenue; less uncertainty
'Lethargic' stock production due to slow growth:
Impact on egg production is minimal in all scenarios

TAC 40t Relative Egg Production in 2017
PV (Mio AU\$) for \$20/trap lift \& d = 0.05

Conclusions

- Trade-offs between TAC and size limits: Profitability of the fishery can be improved without compromising on egg production
- Explicit weighting of all criteria still required
- Trends in egg production \& present value robust against different levels of cost and discount rate
- Simplicity of analysis allows for better understanding of basic economic dynamics in the fishery and by the fishing industry: e.g. effects on costs and revenue
- Limitations e.g. when fleet dynamics changes substantially under different management scenarios
- Cost-effective approach for low-value fisheries

