Modelling multiple fish quota markets with discarding

Aaron Hatcher University of Portsmouth, UK

FAERE Workshop, Brest, 11-12 May 2017

1/15

Inverse (derived) demand for quota

- Inverse (derived) demand for quota
- Quota compliance?

- Inverse (derived) demand for quota
- Quota compliance?
- Production jointness and "weak output disposability" (costly to reduce undesirable outputs)*

- Inverse (derived) demand for quota
- Quota compliance?
- Production jointness and "weak output disposability" (costly to reduce undesirable outputs)*
- *Turner (JEEM, 1997), Singh & Weninger (JEEM, 2009)

- Inverse (derived) demand for quota
- Quota compliance?
- Production jointness and "weak output disposability" (costly to reduce undesirable outputs)*
- *Turner (JEEM, 1997), Singh & Weninger (JEEM, 2009)
- Control over landings, not harvest

- Inverse (derived) demand for quota
- Quota compliance?
- Production jointness and "weak output disposability" (costly to reduce undesirable outputs)*
- *Turner (JEEM, 1997), Singh & Weninger (JEEM, 2009)
- Control over landings, not harvest
- Free disposal (costless discarding)

- Inverse (derived) demand for quota
- Quota compliance?
- Production jointness and "weak output disposability" (costly to reduce undesirable outputs)*
- *Turner (JEEM, 1997), Singh & Weninger (JEEM, 2009)
- Control over landings, not harvest
- Free disposal (costless discarding)
- Species/stock-specific quotas

► *M* species fishery with *N* fishing vessels (heterogeneous)

- ▶ *M* species fishery with *N* fishing vessels (heterogeneous)
- Assume each vessel has a (non-random) joint harvest technology where

$$H = H(E)$$

$$h_i = \beta_i H, \quad i = 1, 2, ..., M$$

$$\frac{dC(H)}{dH} = \begin{cases} c(H) \\ c \end{cases}$$

3/15

- M species fishery with N fishing vessels (heterogeneous)
- Assume each vessel has a (non-random) joint harvest technology where

$$H = H(E)$$

$$h_i = \beta_i H, \quad i = 1, 2, ..., M$$

$$\frac{dC(H)}{dH} = \begin{cases} c(H) \\ c \end{cases}$$

 Given quota (lease) prices r_i, the profit maximising harvest H^{*} satisfies

$$\sum_{i}\beta_{i}\left[p_{i}-r_{i}\right]-c=\lambda\geq0$$

where λ is the shadow price of maximum harvest/effort

- M species fishery with N fishing vessels (heterogeneous)
- Assume each vessel has a (non-random) joint harvest technology where

$$H = H(E)$$

$$h_i = \beta_i H, \quad i = 1, 2, ..., M$$

$$\frac{dC(H)}{dH} = \begin{cases} c(H) \\ c \end{cases}$$

 Given quota (lease) prices r_i, the profit maximising harvest H* satisfies

$$\sum_{i}\beta_{i}\left[p_{i}-r_{i}\right]-c=\lambda\geq0$$

where λ is the shadow price of maximum harvest/effort

Individual quota demands are

$$q_i(r_i) \leq h_i$$

- M species fishery with N fishing vessels (heterogeneous)
- Assume each vessel has a (non-random) joint harvest technology where

$$H = H(E)$$

$$h_i = \beta_i H, \quad i = 1, 2, ..., M$$

$$\frac{dC(H)}{dH} = \begin{cases} c(H) \\ c \end{cases}$$

 Given quota (lease) prices r_i, the profit maximising harvest H* satisfies

$$\sum_{i}\beta_{i}\left[p_{i}-r_{i}\right]-c=\lambda\geq0$$

where λ is the shadow price of maximum harvest/effort

Individual quota demands are

$$q_i(r_i) \leq h_i$$

• Discards are $h_i - q_i(r_i) \ge 0$

3/15

▶ With costless discarding, we expect quota price ceilings

 $r_i \leq p_i$

> With costless discarding, we expect quota price ceilings

$$r_i \leq p_i$$

• Excess quota supply implies $r_i = 0$

> With costless discarding, we expect quota price ceilings

$$r_i \leq p_i$$

• Excess quota supply implies $r_i = 0$

Hence

$$0 \leq r_i \leq p_i$$

▶ With costless discarding, we expect quota price ceilings

$$r_i \leq p_i$$

• Excess quota supply implies $r_i = 0$

Hence

$$0 \leq r_i \leq p_i$$

When do we expect *interior* quota prices (industry inverse quota demands)?

$$0 < r_i(Q_i) < p_i, \quad i = 1, 2, ..., M$$

4/15

With costless discarding, we expect quota price ceilings

$$r_i \leq p_i$$

• Excess quota supply implies $r_i = 0$

Hence

$$0 \leq r_i \leq p_i$$

When do we expect *interior* quota prices (industry inverse quota demands)?

$$0 < r_i(Q_i) < p_i, \quad i = 1, 2, ..., M$$

When all quota markets just clear (no excess demands)...

 Consider two species/quotas, with excess demand for Species 1 quota

- Consider two species/quotas, with excess demand for Species 1 quota
- Species 1 discarded so that

 $r_1 = p_1$

- Consider two species/quotas, with excess demand for Species 1 quota
- Species 1 discarded so that

$$r_1 = p_1$$

▶ For a representative vessel, H^{*} satisfies

$$\beta_2 \left[p_2 - r_2 \right] - c = \lambda \ge 0$$

where $r_2 = 0$ (Species 2 quota slack) or $0 < r_2 < p_2$ (Species 2 quota market *just* clears)

- Consider two species/quotas, with excess demand for Species 1 quota
- Species 1 discarded so that

$$r_1 = p_1$$

▶ For a representative vessel, H^{*} satisfies

$$\beta_2 \left[p_2 - r_2 \right] - c = \lambda \ge 0$$

where $r_2 = 0$ (Species 2 quota slack) or $0 < r_2 < p_2$ (Species 2 quota market *just* clears)

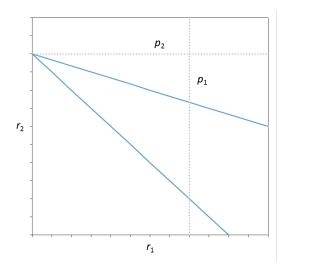
With r₁ = p₁, vessels are *indifferent* between discarding and landing Species 1

- Consider two species/quotas, with excess demand for Species 1 quota
- Species 1 discarded so that

$$r_1 = p_1$$

▶ For a representative vessel, H^{*} satisfies

$$\beta_2 \left[p_2 - r_2 \right] - c = \lambda \ge 0$$


where $r_2 = 0$ (Species 2 quota slack) or $0 < r_2 < p_2$ (Species 2 quota market *just* clears)

- With r₁ = p₁, vessels are *indifferent* between discarding and landing Species 1
- Individual demands for Species 1 quota are indeterminate

$$eta_1\left[p_1 - r_1
ight] + eta_2\left[p_2 - r_2
ight] = c + \lambda$$

$$\beta_1 \left[p_1 - r_1 \right] + \beta_2 \left[p_2 - r_2 \right] = c + \lambda$$

► Quota price ceiling depends on expected cost of discarding (penalty) φ > 0

 $r_i \leq p_i + \phi$

► Quota price ceiling depends on expected cost of discarding (penalty) φ > 0

$$r_i \leq p_i + \phi$$

 Assume φ arbitrarily larger than the marginal value of aggregate harvest (inverse demand for quota)

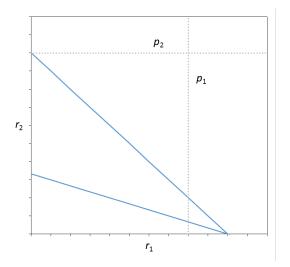
► Quota price ceiling depends on expected cost of discarding (penalty) φ > 0

$$r_i \leq p_i + \phi$$

- Assume φ arbitrarily larger than the marginal value of aggregate harvest (inverse demand for quota)
- Species 1 quota "chokes" harvest implies r₂ = 0 and the condition

$$r_1 = p_1 + \frac{1}{\beta_1} \left[\beta_2 p_2 - c\right]$$

► Quota price ceiling depends on expected cost of discarding (penalty) φ > 0


$$r_i \leq p_i + \phi$$

- Assume φ arbitrarily larger than the marginal value of aggregate harvest (inverse demand for quota)
- Species 1 quota "chokes" harvest implies r₂ = 0 and the condition

$$r_1 = p_1 + \frac{1}{\beta_1} \left[\beta_2 p_2 - c\right]$$

Species 1 quota valued at the entire marginal value of harvest

$$eta_1\left[p_1 - r_1
ight] + eta_2\left[p_2 - r_2
ight] = c + \lambda$$

Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?

- Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?
- Quotas set in the "right" proportions?

- Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?
- Quotas set in the "right" proportions?
- Industry adjusts individual species harvest rates (β_i) ?

- Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?
- Quotas set in the "right" proportions?
- Industry adjusts individual species harvest rates (β_i)?
- Small, disaggregated, thin "sub-markets"

- Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?
- Quotas set in the "right" proportions?
- Industry adjusts individual species harvest rates (β_i)?
- Small, disaggregated, thin "sub-markets"
- Imperfect/asymmetric information

- Why do we generally observe *interior* quota prices when price corners (0, p_i) are more likely?
- Quotas set in the "right" proportions?
- Industry adjusts individual species harvest rates (β_i)?
- Small, disaggregated, thin "sub-markets"
- Imperfect/asymmetric information
- Quota prices determined out of equilibrium (heuristic)?

▶ 3 vessels, 3 quota species

- ▶ 3 vessels, 3 quota species
- Different betas and marginal costs

- ▶ 3 vessels, 3 quota species
- Different betas and marginal costs
- Determine harvests and allocate quota to maximise the (static) value of the fishery

- ▶ 3 vessels, 3 quota species
- Different betas and marginal costs
- Determine harvests and allocate quota to maximise the (static) value of the fishery
- Determine maximal (uniform, linear) quota prices...

Scenario 1

	5													A4 - Excel												٥
1.6	_		NSERT	PAGE LAYOU		VIULAS	DATA	REVIEW		DEVELO		DD-INS		SOLVER PLA		SOLVER HOM										5
	A	8	C	D	E	F		G	н	1	1	К	L	M	N	0	P	Q	R	5	T	U	v	W		х
		v1	¥2	V3				v1	¥2	¥3	H max															
c b1		1.75	1.90			н		2000.00	2000.00	2000.00	2020.00								Quota	Price/EV	Price					
		0.35	0.40			C(H)		3500.00	3800.00	3900.00				10?	NO	× 12 -										
b		0.25	0.35			ht		700.00	800.00		2200.00															
b3 p1		0.40	0.25			h2 h3		500.00 800.00	700.00	700.00	1900.00		r max			10 -		_								
		8.00	3.00			n3 q1		700.00	800.00	700.00	2200.00		10.00	10.00												
		7.00	7.00	7.00		Sb		500.00	700.00	700.00	1900.00		8.00	8.00		6 -	_									
1		9.40 4.40				q3 11		800.00 700.00	500.00 800.00	600.00 700.00	1900.00		7.00	7.00												
12		5.40				12		500.00	700.00	700.00	1900.00					4 -	_									
13		5.40				13		800.00	500.00	600.00	1900.00		r min	d max												
						d1		0.00	0.00	0.00	0.00		0.00	10000		2 -										
	2200					d2		0.00	0.00	0.00	0.00		0.00	10000		0										
	1900					d3		0.00	0.00	0.00	0.00		0.00	10000				1		2		3				
	1900					v1		7000.00	8000.00	7000.00	0.00		0.00	10000												
	1,000					12		4000.00	5600.00	5600.00										vest/Quo						
	2300					¥3			3500.00	4200.00		total							nan	vest/quo	ca					
	1600					profit			13300.00			39300.00				3000										
	2500															2500										
						rigi		6580.00	7520.00	6580.00						2500										
						1292		2200.00	3080.00	3080.00						2000										
						1303			2700.00																	
									13300.00			39300.00				1500					-		-			
								0.00	0.00	0.00		0.00				1000										
																500										
																0	_									
																		1		2		3				
		-	_																							
£1		Shee	1	Ð																					_	

Scenario 2

	5												REST Model														
1.E	HO		NSERT	PAGE LAYOU		MULAS	DATA	REVIEV		DEVELO	OPER A	DD-INS		SOLVER PLA		SOLVER HOP											100
	A	8	C	D	E	F		G	н	1	1	К	ι	M	N	0	P		Q	R	5	т	U	v	W		x
c		v1	¥2	V3				v1	¥2	V3 2020.00	Нтак						-										
c b1		1.75	1.90			H C(H)		2020.00	2020.00		2020.00				NO	-			0	uota Pr	ice/EV I	Price					
b2		0.35	0.40			C(H) h1		3535.00	3838.00 808.00	3939.00 707.00	2222.00	_		10?	NO	12											
62 63		0.40	0.30			h2		505.00	707.00	707.00	1919.00																
03 01		10.00	10.0			h3		808.00	505.00	606.00	1919.00	TAC	rmax			10 -											
2		8.00	8.00			q1		707.00	808.00	707.00	2222.00		0.00	10.00													
3		7.00	7.00			41 92		505.00	358.00	707.00	1600.00		8.00	8.00													
1		0.00		7.00		q3		808.00	505.00	606.00	1919.00		0.00	7.00		5 -				_							
ż		8.00				42		707.00	808.00	707.00	22222.00	2,500	0.00	7.00													
3		0.00				12		505.00	358.00	707.00	1600.00					4 -				_							
		4104				ñ		808.00	505.00	606.00	1919.00		r min	d max													
						d1		0.00	0.00	0.00	0.00		0.00	10000													
	2200					d2		0.00	319.00	0.00	319.00		8.00	10000		0 -											
	1900					d3		0.00	0.00	0.00	0.00		0.00	10000				1			2		3				
	1900					v1		7070.00	8080.00	7070.00																	
						¥2		4040.00	3104.00	5656.00										Harua	st/Quot	19					
	2300					¥3		5656.00	3535.00	4242.00		total								marve	ny quoi						
	1600					profit		13231.00	10681.00	13029.00		37141.00				3000											
	2500															2500											
						rigi		0.00	0.00	0.00								_	_								
						r2q2		4040.00	3104.00	5656.00						2000		_									
						r3q3		0.00	0.00	0.00																	
								4040.00	3104.00	5656.00		12800.00				1500											
																1000											
								9191.00	7777.00	7373.00		24341.00				1000											
																500		_				_		-			
																0	_	1		_	2	_					
																		1			z		5				
		Shee		æ												1 K	1		_						-	1	

Scenario 3

FILE	H	OME I	ISERT	PAGEI	LAYOUT	FORM	AULAS	DATA	REVIEN	V VIEW	DEVELO	DEFR A	DD-INS	PRENEUM	SOLVER PLA	TEORM	SOLVER HOW	F									5
		8	c		D	E	F		G	н	1		ĸ			N	0		9		R		т	U	v	w	×
		v1	¥2		¥3				v1	¥2	¥3	Нтак															
c		1.75	1.90	1	L.95		н		2020.00	2020.00	1108.57	2020.00		-						Quet	a Price,	EV D	ice				
b		0.35	0.40	0	0.35		C(H)		3535.00	3838.00	2161.71				LO?	YES	• 12 -			Cau	a r neeg		100				
ь	2	0.25	0.35		0.35		h1		707.00	808.00	388.00	1903.00	_														
ь	3	0.40	0.25		0.30		h2		505.00	707.00	388.00	1600.00					10 -										
p		10.00	10.0	1	0.00		h3		808.00	505.00	332.57	1645.57	TAC	r max													
p	2	8.00	8.00		3.00		q1		707.00	808.00	388.00	1903.00	2300	0.00	100.00		- a -										
p		7.00	7.00		7.00		q2		505.00	707.00	388.00	1600.00	1600	100.00	100.00												
r		0.00					q3		808.00	505.00	332.57	1645.57	2500	0.00	100.00		0										
12		18.43					n.		707.00	808.00	388.00	1903.00					4 -				_						
r3		0.00					12		505.00	707.00	388.00	1600.00															
							8		808.00	505.00	332.57	1645.57		r min	d max		2										
							d1		0.00	0.00	0.00	0.00		0.00	0												
	2200						d2 d3		0.00	0.00	0.00	0.00		0.00	0		0		1		2			3			
	1900						d3 v1		7070.00	8080.00	3830.00	0.00		0.00	0												
	1900						¥2		4040.00	5656.00	3104.00																
	2300						¥2 ¥3		5656.00		2328.00		total							Ha	arvest/0	Juota					
	1600						profit			13433.00			33814.29				3000										
	2500						prom			19433.00	140040		33004.23				2500										
ŀ	2.000						rtot		0.00	0.00	0.00						2500										
Ŀ							1202			13029.00	7150.29						2000										
Ŀ							r3q3		0.00	0.00	0.00																
									9306.43	13029.00	7150.29		29485.71				1500										
																	1000										
									3924.57	404.00	0.00		4328.57				1000										
																	500			_							
																	0	_	1			2					
																			1					3			
		Sheet		Ð													1 K										-

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modelling work in progress...

<ロ > < 部 > < 注 > < 注 > 注 の Q (~ 15 / 15