<u>Cost Uncertainty in Experimental</u> <u>Emissions Markets and Price Control</u>

Anca Mihut – GATE Lyon

FAERE Workshop Brest 2017

Motivation

- Concerns about price level/ price volatility
- Uncertainty about abatement costs
- Need for cost containment measures

Quantity based mechanisms (Cap-andtrade programs) vs. Price based mechanisms (Taxes)

¥

Hybrid Mechanisms

(Pizer, 2002; Fankhauser et al., 2010)

- Preserve allocative market efficiency
- Control for the price risk
- Strong price signal

Objectives

- Price Control Mechanisms Induce more elasticity into the supply
 - Mitigate the effects of shocks in the cost of pollution
 - Maintain in the market the right carbon price

Experimental Tool – Laboratory Test Bed for the Market Institution (Chen and Ledyard, 2008)

- Test effectiveness of hybrid based policies
- <u>Permit Transfer Mechanism (PT)</u>
 Banking and Borrowing permits
- <u>Permit Transfer Adjustable Supply</u> <u>Mechanism (PTAS)</u>
 (Banking and Borrowing + Supply Rule (Newell et al. , 2005))

- Reduction of Price Volatility
- Convergence towards the target price
- Emissions Evolution

Baseline

$$\max_{d_{i,t}} \sum_{t=0}^{T} (1+\mu)^{-1} E_t [p_y \overline{y}_{i,t} - \overline{C}_i(\overline{y}_{i,t}) - C_i(d_{i,t}, \theta_t) - pa_t(-g_i + F_i(\overline{y}_{i,t}, d_{i,t}))]$$

Permit Transfer (PT)

$$V_t(B_{i,t},\Omega_{i,t}) = \max_{\substack{d_{i,t},B_{i,t+1} \\ +(B_{i,t+1}/R_t))]} [p_y \overline{y}_{i,t} - C_i(\overline{y}_{i,t}) - C_i(d_{i,t},\theta_t) - pa_t(-g_i + F_i(\overline{y}_{i,t},d_{i,t}) - B_{i,t} + (B_{i,t+1}/R_t))] + (1+\mu)^{-1} E_t[V_{t+1}(B_{i,t+1},\Omega_{i,t+1})] + \lambda_t (B_{i,t} + g_i + a_i - F_i(\overline{y}_{i,t},d_{i,t}) - \alpha)$$

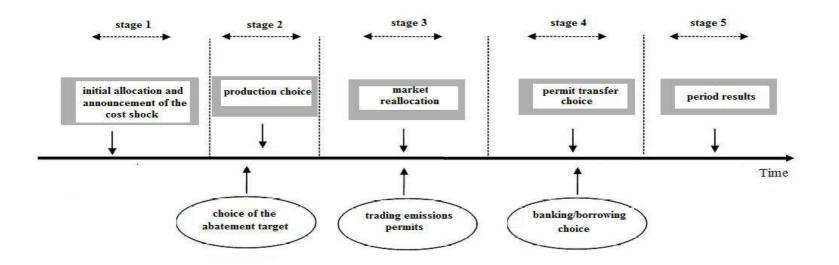
$$\longrightarrow p_t = \lambda_t + (1+\mu)^{-1} R_t E_t(p_{t+1})$$

Permit Transfer with an Adjustable Supply (PTAS)

Supply Rule (Newell et al., 2005)

$$g_0 = g_0^*$$

$$g_{t+1} = g_{t+1}^* - R_t[d_t(pa_t^*; \theta_t) - d_t(pa_t^*; 0)], t \ge 0$$


Experimental Design and Procedures

- 24 sessions/ 8 per treatment / 15 periods / Groups of 6 players
- 144 subjects/ 48 subjects in each treatment:
 - Baseline: fixed initial supply
 - Permit Transfer (PT): banking and borrowing + fixed initial supply
 - Permit Transfer Adjustable Supply (PTAS): banking and borrowing + variable initial supply

Game Intuition:

- Each player has to produce a certain amount of a good (abatement units)
- Initial provision of coupons (emissions permits) and cash
- Possibility to avoid production costs by holding coupons/profit maximization

Compliance Rule: Coupons + Production >= Production Target

- Stage 1: Announcement
 - production target
 - initial cash
 - initial coupon provision
 - production cost level

Units	Production Costs	You have HIGH production costs in this period				
unit 1	68					
unit 2	76					
unit 3	84					
unit 4	92					
unit 5	100					
unit 6	108					
unit 7	116					
unit 8	124					
unit 9	132					
unit 10	140	Initial Cash Provision: 2200.				
unit 11	148	Initial coupon provision :5.				
unit 12	156	Production target : 20.				
unit 13	164					
unit 14	172					
unit 15	180					
unit 16	188					
unit 17	196					
unit 18	204					
unit 19	212					
unit 20	220	ОК				

• Stage 2: Production Choice

Units	Production Costs	
unit 1	68	
unit 2	76	Initial Cash Provision : 2200.
unit 3	84	Initial Coupon Provision : 5.
unit 4	92	Production target : 20 .
unit 5	100	
unit 6	108	
unit 7	116	
unit 8	124	
unit 9	132	Which is your production choice :
unit 10	140	
unit 11	148	
unit 12	156	
unit 13	164	production choice
unit 14	172	production choice
unit 15	180	
unit 16	188	
unit 17	196	
unit 18	204	
unit 19	212	
unit 20	220	

• Stage 3: Coupon Market : - continuous double auction market structure

• Stage 4: Permit Transfer Decision

Units	Production Costs					
unit 1	68					
unit 2	76					
unit 3	84					
unit 4	92					
unit 5	100	Initial Cash Provision: 2200				
unit 6	108	Initial coupon provision :5. Production target : 20 .				
unit 7	116	r roduction target. Lot.				
unit 8	124					
unit 9	132					
unit 10	140	How many coupons do you want to transfer :				
unit 11	148					
unit 12	156	borrow save				
unit 13	164					
unit 14	172					
unit 15	180					
unit 16	188					
unit 17	196					
unit 18	204					
unit 19	212					
unit 20	220					

• Stage 5: Period Results

Units	Production Costs	No. I I I I I I I I I I I I I I I I I I I				
unit 1	68	You are compliant to your production target				
unit 2	76					
unit 3	84					
unit 4	92					
unit 5	100					
unit 6	108	Stock of coupons available: 5				
unit 7	116	Production choice : 15				
unit 8	124	Production target: 20				
unit 9	132					
unit 10	140	Number of non-compliance periods : 0				
unit 11	148	Number of hon-compliance penous . o				
unit 12	156	Initial Cash Provision : 2200				
unit 13	164	Production Costs : 1860				
unit 14	172	Profit on the market : 0.				
unit 15	180	Profit of the period: 340.				
unit 16	188	Total Profit : 340.				
unit 17	196					
unit 18	204					
unit 19	212					
unit 20	220	ок				

Hypothesis 1: In the **Baseline** the relation between cost shocks and permit prices is stronger without permit transfer possibilities across periods, that would result into higher price volatility.

Hypothesis 2: In the **Permit Transfer (PT)** treatment, we should observe reduced price volatility and a more stable price path between and within periods with respect to the Baseline.

Hypothesis 3: In the **Permit Transfer Adjustable Supply (PTAS)** treatment we should observe an increased permit price control effectiveness. Besides stabilizing the price path, the mechanism induces convergence towards the targeted equilibrium price.

Results – Average Prices

Result 1: a) Average prices decrease over periods (no end of session redemption value).

b) Average prices are significantly different in the PT and the PTAS with respect to the Baseline.

c) In the Baseline and the PT treatment, prices are significantly different from the equilibrium target price. In the PTAS treatment prices significantly converge towards the equilibrium price target.

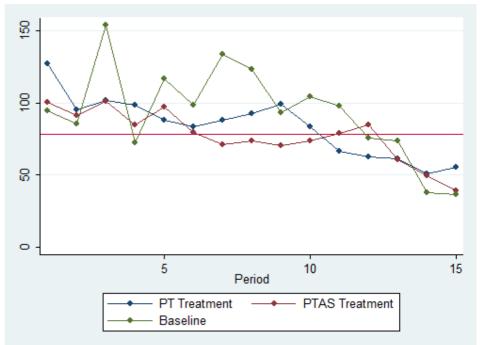


Figure. Mean permit prices evolution across all periods for all treatments

	Baseline			Permit Transfer Treatment			Permit Transfer with Adjustable Supply		
	Periods 1-2	Periods 3-12	Periods 12-15	Periods 1-2	Periods 3-12	Periods 12-15	Periods 1-2	Periods 3-12	Periods 12-15
Average Permit	107.98	89.27	50.63	107.51	83.32	55.67	99.74	80.30	50.92
Price	(46.13)	(41.65)	(44.32)	(53.93)	(27.89)	(19.34)	(28.34)	(9.83)	(17.19)

Result 2. Volatility is significantly reduced in the PT and the PTAS treatments with respect to the Baseline condition. There is no significant difference between the two price control mechanisms.

Result 3. Dispersion is significantly reduced in the PT and the PTAS treatments with respect to the Baseline condition. There is no significant difference between the two price control mechanisms.

Result 4. Traded Volume is significantly increased in the PT and the PTAS treatments with respect to the Baseline condition. There is no significant difference between the two price control mechanisms.

Results – Price Analysis

Dependent variable	Permit price	Price Volatility	Price dispersion	Volume Traded
Constant	99.337***	73.316***	24.563***	4.087***
	(8.471)	(11.263)	(5.188)	(.635)
РТ	-14.123	-55.898***	-14.628**	3.896***
	(11.711)	(12.164)	(6.041)	(1.496)
PTAS	-18.406*	-56.791***	-16.907***	5.559***
	(10.279)	(11.564)	(5.245)	(1.195)
Shock Magnitude	.646***	.203**	.029	029***
-	(0.114)	(0.093)	(0.035)	(.011)
Periods 1-2 *Baseline	-2.05	-32.348**	-2.204	.210
	(16.691)	(12.694)	(8.511)	(.724)
Periods 1-2 *PT	35.752**	57.949**	1.789	-2.294**
	(17.819)	(26.563)	(4.089)	(1.022)
Periods 1-2 * PTAS	17.340**	23.971***	7.033***	-4.005***
	(8.201)	(8.469)	(2.506)	(1.278)
Periods 13-15 *Baseline	-48.044***	-27.252	-8.837**	388
	(7.609)	(21.861)	(3.53)	(.871)
Periods 13-15 *PT	-35.766***	-1.605	-4.537	1.931***
	(8.683)	(5.568)	(2.685)	(.735)
Periods 13-15 * PTAS	-19.831**	5.038	6.555***	1.928
	(9.989)	(4.048)	(2.262)	(1.601)
Observations	360	360	360	360
Groups	24	24	24	24

Results - Emissions

Result 5. **Mean Aggregate Emissions** are significantly higher in the PT and the PTAS treatment with respect to Baseline condition and increase across periods.

Result 6. **Emissions Volatility** is significantly higher in the PT and the PTAS treatment with respect to Baseline condition.

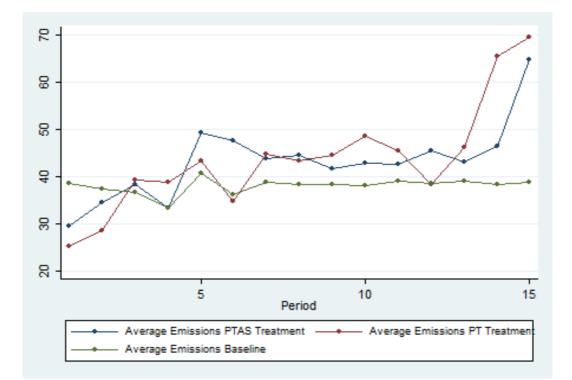


Figure. Mean aggregate emissions evolution

Results – Emissions Analysis

Dependent variable	Aggregate 1	Emissions	Emissions Volatility		
	Coefficient	St. error	Coefficient	St. error	
Constant	38.012***	1.489	2.837***	.529	
РТ	4.881	7.148	7.487***	1.432	
PTAS	4.056	2.037	16.450***	1.765	
Shock Magnitude	.041	0.032	017	.028	
Periods 1-2 *Baseline	.952	.743	218	.736	
Periods 1-2 *PT	-10.149*	4.969	12.479***	3.638	
Periods 1-2 * PTAS	-14.976**	3.868	8.147*	4.578	
Periods 13-15 *Baseline	1.005	.862	-1.257*	.671	
Periods 13-15 *PT	8.068	5.678	5.387**	1.797	
Periods 13-15 * PTAS	18.987**	2.745	796	2.519	
Observations	360		360		
Groups	24		24		

Table. Linear Random Effects Models of Emissions and Emissions Volatility

- Experimental emissions trading markets – Price control mechanisms

Permit Transfer (PT) mechanism allowing for banking/borrowing permits stabilizes the price path between and within periods.

Permit Transfer with an Adjustable Supply Rule (PTAS) also settles the price path around the targeted price level.

- Limitations - banking/borrowing restrictions

- target price/ equilibrium prediction efficiency trade-off