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Deoxygenation of coastal and oceanic waters

Climate change

(winds, temperature, sea
ice, precipitation, runof
and ocean circulation)

i Organic poliutants and trace metals

“arrows). The gray arrows denote the

interconnections among ocean
biogeochemical dynamics.



Deoxygenation of coastal and oceanic waters
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represent negative feedback to the system.




Taxa depending impact of deoxygenation
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Deoxygenation of coastal waters — Dead Zones

Greater input of.growth limiting Rabalais et al. 2009
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Schematic representation of the cascading effects of increasing nutrients in a coastal
ecosystem. The harmful effects of nutrient over-enrichment are presented in grey letters.




Deoxygenation of coastal waters — Dead Zones

Hypoxia impacts biogeochemical cycling and may significantly disturb ecosystem functionality:

« directly affects living organisms (e.g., benthic organisms, fishes),

« may, in extreme cases, lead to anoxia with the production of greenhouse gases (e.g., CH,,
N,O), or toxic substances (e.g., sulfide),

« alters the cycling of chemical elements such as nitrogen or phosphate,

« modifies the sedimentary geochemical cycling through the removal of bioturbating infauna,
« alters the food web structure by changing the balance of chemical elements (e.g., N, C, P)
and by killing some components and hence reducing the transfer of energy towards the

higher trophic levels.
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Deoxygenation of oceanic waters — Oxygen Minimum Zones

Annual oxygen [mi/] at 200 m. depth (one-degree grid)

World Ocean Atlas 2013, Garcia et al. 2014




4 2099 Zonal mean profiles of model-
o simulated changes in ocean properties
7 for 2099 (under the IPCC SRES A2
< & . .
i scenario) and 2000 relative to the year
| | - 1850 (atmospheric CO, — 1850: 280
®» - ppm; 2000: 370 ppm; 2099: 840
] ppm).
£ 08
g aad a) Change in sea-surface temperature;
g iy b) change in upper ocean stratification,
. , , I I ] density gradient between 0-50 m and
(¢) 0 ‘ 100_200 m;
R - .. MMo---7 . ¢) changein the surface aragonite ocean
£ 1- e saturation state;
on undersaturated ™
4 - — d) change in the mean concentration of
. _2 - change needed to : _ oxygen in the thermocline (200_600
reach Q=1 supersaturated m) ]
d) 10q
i Results are from the NCAR CSM 1.4
7 107 model.
5: -20
s ]
< -30 -
_40_ I T T T 1

T
60°S 30°S Eq 30°N 60°N

Gruber 2011




Orygen
01 084
0

iyxc» }
1400+ \
\
i \
] = |
Altered Size Structure and Composition
12
10+
81 1050_ gt
E‘):fected 1100 "E,:: o
Species 6 x,:_- P
:‘i'.‘“ o 2
4 4 ..‘."‘/‘..'..
,4‘:'.. ””'“.“...’8.50 140 2-day 140 5-day 140 in sita 300 2-day 300 S-day 300 n situ 340 5-day %40 in sheids0 S-day
2 I—e:.cooo""..’ &
Jé:-nnnu 800 m
(o] T T
(o} 10 20 30 40
Sample Size
Rapid Biodiversity Shifts Reduced Colonization Altered Carbon Processing

Would et al. 2007; Levin et al. 2009; Gooday et al. 2009; Levin et al. 2013 9




Projections of oceanic waters — Bottom Waters
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Projections of oceanic waters — Surface Waters

a. Sea surface temperature change b. Sea surface pH change
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Consequences of Hypoxia

Declining oxygen affects virtually all biogeochemical and biological marine processes

Direct effects on aerobic organisms Indirect through altered ecological
- Negative impact on growth, Interactions
reproduction survival « Negative impact on functional

attributes of communities, e.g.
biodiversity, resilience, food-web
structure

Loss of ecological services, human depend on —

in particular food security, tourism and
conservation, but also shoreline protections,
nutrient cycling , carbon sequestration
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Multiple Stressor Challenge

Temperature effects on hypoxia impacts Altieri & Gedan 2014
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Summary of climate-dependent changes in
the California Current.

Observed physical changes include:

surface warming, strengthened stratification,
a deepening thermocline that is
superimposed on strengthened upwelling
wind stress, resulting in increased coastal
and curl-driven upwelling.

Doney et al. 2012

13




Multiple Stressor Challenge

Multiple stressors — management, understanding

/ Atmospheric CO,

warming +CO,—> Acidification
> Respiration — ?

7 N 0
Eutrophication N Hypoxia/

Fisheries deoxygenation

For mobile species, hypoxia can determine exposure to acidification
Almost all species tested behaviorally avoid low dissolved oxygen.

Co-occurring hypoxia and acidification may reduce exposure to respiration-driven
acidification.

Individual stressors can either exacerbate or reduce effects of other stressors.

We can’t predict consequences or manage effectively if we don’t consider
the full context in which organisms live
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Moving forward:

CURRENT STATE

Much of the information we have is based on activities from North America, Europe and Asia
e Missing a lot of upwelling regions

Developing countries face severe hypoxia, e.g. Pearl River in China, similar in the past also in
Europe (Thames) and US (Delaware River)

We know little about oceanographic conditions in the least populated areas in the world
Scarce information on monetary assessment accounting for the impact of deoxygenation

Model simulations still have difficulties in properly representing oxygen historical data (Cabré et
al. 2015)

Lack a full understanding of mechanisms controlling oxygen in the ocean interior and on the
shelves

Nevertheless models predict continued and intensified ocean deoxygenation

Separate schools of oxygen researchers open ocean vs. coastal/estuarine

15



Moving forward:

FUTURE CHALLENGES

Future scenarios for oxygen depend on a combination of drivers related to global environmental
change and land-use, including warming, growing human population, and extensive coastal
agricultural practices

Need for integrated action — Formal Coastal and Open Ocean OXYGEN Researchers network

New collaborative research:

Identify knowledge gaps

Expand global coverage

Revise model calculations

Standardize applied methods

Improve predictions for food security and tourism
Evaluate impact on non-market ecosystem services

Value the impact of ocean deoxygenation

Better advocate for directing resources to research on deoxygenation and potential mitigation and
adaptation measures

16
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Thank you!

Kirsten Isensee

Ocean Science Section — Intergovernmental
Oceanographic Commission of UNESCO
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«Fig. 4 Strong interactions between fisheries mortality and
eutrophication occur because of effects of europhication on
behaviors, effects of fisheries removals on population size
structure, and because of the magnitude of mortality caused by
fisheries exploitation. a Behavior: Norway lobster. Behavioral
responses to hypoxia can increase the susceptibility of
organisms to fishing gear, and at least initially result in
increased landings. Catch per unit effort of Norway lobsters in
the Kattegat along the coast of Sweden peaked in the mid-
1980s, as worsening hypoxia induced lobsters to leave their
burrows, making them more accessible to nets (Baden et al.,
1990). Nevertheless, landings of Norway lobster in the
Kattegat—Skagemrak area have remained high. b Size distribu-
tions: Baltic cod. Fishenes regulations can indirectly influence
the susceptbility of cod eggs to hypoxia-induced montality by
influencing the size of spawning females in the population.
Large females produce large eggs that are sufficiently buoyant
to be retained in oxygenated mid-depth waters; smaller females
produce small eggs that sink and perish (Vallin & Nissling,
2000). Cod image hup://stellwagen.noaa.gov/visit/welcome.
html. ¢ Reduced fishing mortality: Strped bass. Decisive
management action taken to protect spawning stock biomass of
striped bass in Chesapeake Bay is often cited as a successful
example of fisheries management. Stangent fishing regulations
allowed the population to rebound even though eutrophication
and its potential to negatively affect striped bass growth and
habitat persisted

and adults from hypoxia (i.e., fish kills), and other
consequences of eutrophication (e.g., harmful algal
blooms; HABs) is typically a relatively small propor-
tion of total mortality. The pnimary effect of fishing is
the removal of biomass, often of late juveniles or
adults that have high reproductive value, and shifts in
size structure to smaller body size. These effects may
drive strong declines in abundance and, if they exceed
the compensatory reserve of the population, decreases
in population growth rates. In contrast, eutrophication
can result in both increases and decreases in growth



